Preparation and Properties of Inclusion Complexes of 1,2-Dicarbadodecaborane(12) with Cyclodextrins

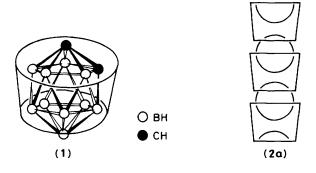
Akira Harada* and Shigetoshi Takahashi

Institute of Scientific and Industrial Research, Ibaraki, Osaka University, Osaka 567, Japan

One-to-one inclusion complexes were obtained in a crystalline state in high yields by treatment of β - and γ -cyclodextrin with 1,2-dicarbadodecaborane(12) (*o*-carborane), whereas α -cyclodextrin formed a 2 : 1 (cyclodextrin : guest) complex on sonication, and a 1 : 1 complex on crystallization from water-propan-2-ol.

Although cyclodextrins (α -, β -, and γ -CD) form inclusion complexes with a wide variety of organic compounds¹ and some organometallic complexes,² there are only a few reports on the preparation of inclusion complexes of inorganic compounds,³ and none, to our knowledge, on inclusion complexes of main-group compounds. Carboranes have unique cage-type structures⁴ and their dianions form complexes with transition metal complexes.⁵ We have found that cyclodextrins form crystalline stoicheiometric inclusion complexes with 1,2-dicarbadodecaborane(12) (*o*-carborane) in high yields.

Inclusion complexes of *o*-carborane with cyclodextrins were obtained in good yield by sonication of an aqueous suspension


of *o*-carborane in a saturated aqueous solution of the CD (method A), or by addition of a solution of *o*-carborane in propan-2-ol to an aqueous solution of the CD (method B). The precipitated product was washed with water to remove any remaining CD. Non-included *o*-carborane was removed by washing with benzene. During this process the guest was not liberated from the CD cavity. The products were recrystallized from water-propan-2-ol (4:1).

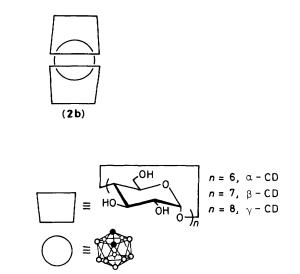

The results are summarised in Table 1; in particular β -CD gave inclusion complexes quantitatively by method B. The complexes were characterized by elemental analysis, i.r. and ¹H n.m.r. spectroscopy, and thermal analysis. They were all shown to be stoicheiometric compounds, with definite

Table 1. Preparation of inclusion complexes.

CD	Molar ratio CD : guest	Product			
		Method A		Method B	
		Yield (%)	CD : guest	Yield (%)	CD : guest
α-CD	1:1	74ª	2:1	88 ^b	1:1
	2:1	58	2:1	88	1:1
β-CD	1:1	35	1:1	100c	1:1
•	2:1			100	1:1
γ-CD	1:1	54	1:1	83	1:1
•	2:1			92	1:1

^a Analysis: C, 42.2 (42.5), H, 6.5 (6.4), B, 5.35% (5.2%) (required values in parentheses); ¹H n.m.r. [360 MHz; (CD₃)₂SO] δ 4.70 (1H, s); i.r. (Nujol) ν_{B-H} 2600 cm⁻¹ [cf. ν_{B-H} (free carborane) 2570 cm⁻¹]. ^b Analysis: C, 40.8 (40.85), H, 6.8 (6.5), B, 9.5% (9.7%); ¹H n.m.r. [360 MHz; (CD₃)₂SO] δ 4.70 (2H, s); i.r. (Nujol) ν_{B-H} 2600 cm⁻¹. ^c Analysis: C, 41.1 (41.3), H, 6.75 (6.5), B, 8.3% (8.45%); ¹H n.m.r. [360 MHz; (CD₃)₂SO] δ 4.70 (2H, s); i.r. (Nujol) ν_{B-H} 2580 cm⁻¹.

CD: guest ratios depending on the cyclodextrin and the preparation method. β -CD and γ -CD gave 1:1 inclusion complexes by both methods A and B, even when *o*-carborane was treated with a two molar excess of CD. α -CD formed a 2:1 (CD: guest) complex even when sonicated with an equimolar amount of *o*-carborane (method A), but gave a 1:1 complex by method B.

These inclusion complexes are sufficiently stable to be recrystallized from water-propan-2-ol. They are also thermally stable: they do not liberate *o*-carborane when heated to 200 °C *in vacuo*. Non-included *o*-carborane is completely sublimed below 80 °C under reduced pressure. Thermogravimetric analyses showed that stability of these complexes persists up to 250 °C; dissociation occurs around the m.p. of the CD component (about 270 °C). These results indicate that the *o*-carborane is tightly included in a CD cavity.

Included *o*-carborane could be recovered by refluxing an aqueous ethanolic solution of the inclusion complex or by heating *in vacuo* in a sublimation tube to the m.p. of the CD.

Computer simulations of the molecular structure indicate that *o*-carborane fits well into a β -CD cavity as shown in structure (1). However, it appears that the *o*-carborane molecule is too large to be completely included in a single α -CD cavity, but fits well into the cavity formed by two α -CD molecules.⁶ Therefore, we propose structure (2a) for the 1:1 inclusion complexes obtained by crystallization from waterpropanol and the structure (2b) for the 2:1 complexes obtained by sonication.

Received, 5th April 1988; Com. 8/01342J

References

- M. L. Bender and M. Komiyama, 'Cyclodextrin Chemistry,' Springer-Verlag, New York, 1977; J. Szejtli, 'Cyclodextrins and their Inclusion Complexes,' Akademiai Kiado, Budapest, 1982; W. Saenger, Angew. Chem., Int. Ed. Engl., 1980, 19, 344.
- A. Harada and S. Takahashi, J. Chem. Soc., Chem. Commun., 1984, 645; A. Harada, K. Saeki, and S. Takahashi, Chem. Lett., 1985, 1157; A. Harada and S. Takahashi, J. Chem. Soc., Chem. Commun., 1986, 1229; H. M. Colquhoun, J. F. Stoddart, and D. J. Williams, Angew. Chem., Int. Ed. Engl., 1986, 25, 487; D. R. Alston, A. M. Z. Slawin, J. F. Stoddart, and D. J. Williams, *ibid.*, 1985, 24, 786; D. R. Alston, T. H. Lilley, and J. F. Stoddart, J. Chem. Soc., Chem. Commun., 1985, 1600.
- 3 F. Cramer, Angew. Chem., 1956, **68**, 115; R. P. Rohrbach, L. J. Rodriguez, E. M. Eyring, and J. F. Wojcik, J. Phys. Chem., 1977, **81**, 944.
- 4 R. K. Bohn and M. D. Bohn, Inorg. Chem., 1971, 10, 350.
- 5 T. E. Paxon, K. P. Callahan, E. L. Hoel, and M. F. Hawthorne, 'Organotransition-metal Chemistry,' eds. Y. Ishii and M. Tsutsui, Plenum Press, New York, 1975.
- 6 K. Harata, Bull. Chem. Soc. Jpn., 1976, 49, 1493.